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Abstract: Novel psychoactive substances (NPS) represent a severe health risk for drug users. Even
though the phenomenon has been growing since the early 2000s, the mechanisms of action of NPS
at the receptors and beyond them are still scarcely understood. The aim of the present study was
to provide a systematic review of the updated knowledge regarding the molecular mechanisms
underlying the toxicity of synthetic opioids, cannabinoids, cathinones, and stimulants. The study
was conducted on the PubMed database. Study eligibility criteria included relevance to the topic,
English language, and time of publication (2010–2020). A combined Mesh and free-text protocols
search was performed. Study selection was performed on the title/abstract and, in doubtful cases,
on the full texts of papers. Of the 580 records identified through PubMed searching and reference
checking, 307 were excluded by title/abstract and 78 additional papers were excluded after full-text
reading, leaving a total of 155 included papers. Molecular mechanisms of synthetic opioids, synthetic
cannabinoids, stimulants, psychedelics, and hallucinogens were reviewed and mostly involved both
a receptor-mediated and non-receptor mediated cellular modulation with multiple neurotransmitters
interactions. The molecular mechanisms underlying the action of NPS are more complex than
expected, with a wide range of overlap among activated receptors and neurotransmitter systems.
The peculiar action profile of single compounds does not necessarily reflect that of the structural
class to which they belong, accounting for possible unexpected toxic reactions.

Keywords: forensic toxicology; new psychoactive substances (NPS); mass spectrometry; toxicody-
namic; mechanism of action

1. Introduction

Novel Psychoactive Substances (NPS) are an inhomogeneous group of substances
which are typically sold as “legal” alternatives to the classical scheduled drugs of abuse,
such as heroin, cocaine, amphetamines, benzodiazepines etc. [1]. The term “novel” derives
from the fact that, contrarily to classical drugs of abuse, NPS were not covered by the
International Drug Control Conventions of 1961–1971 [1,2]. Nowadays, the term could be
considered somehow misleading, since many of the compounds have been later included
in the list of scheduled substances at a national or international level [2]. Nonetheless, the
“legality” of these compounds still represents one of the main attractions for consumers [2].
One of the characteristics of the NPS phenomenon resides in the ease of producing novel
compounds by minimal twisting or modifications of the chemical structures, producing
a nonscheduled molecule and circumventing existing legislations. Some authors have
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underlined that the huge efforts of national/international organizations, striving to include
a molecule within the list of prohibited substances, are the main trigger for the innovation
and production of novel compounds (the so-called “cat and mouse model”) [2,3], which
have rated more than 50 novel compounds per year since early 2000. Thus, even if many
of these substances are now controlled, several are still nonscheduled, undetected, and
unidentified. These substances are not even consumed or produced, but certainly will be
in the next future. To date, the European Monitoring Centre for Drugs and Drug Addiction
(EMCDDA) has monitored 790 new psychoactive substances [1,4,5]. The main drives
for consuming NPS are also the reported “safety” and “natural origin” by the supplier,
both concepts that have led to an extraordinary growth in popularity of NPS since 2007,
especially among younger users browsing the Internet [5–7]. Although they are claimed
as “safe” or sold “not for human consumption,” these substances pose severe health
risks, the prevention of which cannot disregard from an in-depth understanding of their
pharmacokinetic and pharmacodynamic properties.

The aim of the present review is to provide an overview of the molecular mechanisms
of action of the main classes of novel psychoactive substances (synthetic opioids, synthetic
cannabinoids, and synthetic cathinones and stimulants) to better understand the health
risks and the effects arising from their consumption, according to the PICOS process:

P—population/problem: Novel psychoactive substances, synthetic opioids, synthetic
cannabinoids, synthetic cathinones, and stimulants;

I—intervention: In vivo or in vitro studies;
C—comparison, control: Previous knowledge;
O—outcome of interest: Description of the molecular mechanisms of action of novel

psychoactive substances;
S—study design: PubMed review.

2. Materials and Methods

A recent literature search was conducted on PubMed-indexed articles through both
Mesh terms and free-text protocols, pairing any included NPS term with any included
“mechanism of action,” according to the PRISMA Flow diagram.

2.1. Search Term

Novel Psychoactive Substances. The following terms were searched: Novel psychoactive
substance(s); new psychoactive substance(s); synthetic opioids; synthetic cannabinoids;
synthetic cathinones; (“Synthetic Drugs” [Mesh]) AND (“Cannabinoids” [Mesh] OR “Anal-
gesics, Opioid” [Mesh]).

Molecular mechanisms. The terms “mechanism,” “mechanism of action,” and “receptor”
were alternatively used.

2.2. Eligibility Criteria

The English language and time interval of publication, from January 2010 to De-
cember 2020, were applied as filters and inclusion criteria. Eligible studies investigated
the receptor-based mechanism of action of NPS, and particularly of synthetic cathinones
and stimulants, synthetic cannabinoids, and synthetic opioids, or the neural mechanism
through which these substances exert their effects on the brain. In vivo and ex vivo studies
were also included.

2.3. Exclusion Criteria

Papers focusing on the potential therapeutic effects of NPS were not considered in the
present review.
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2.4. Study Selection and Data Collection Process

Titles and abstracts were first screened for inclusion criteria and, in dubious cases, full
texts were examined. References of the selected article were further screened, and related
papers were included as a source of additional data.

A database was built with the included articles. Authors, title, journal, and year of
publication were extracted, and papers were considered for the respective population and
outcomes of interest.

3. Results

The literature search provided the following results (Figure 1).
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Figure 1. PRISMA flow diagram of the present review. From: Moher D, Liberati A, Tetzlaff J, et al.
Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS
medicine, 2009, 6(7): e1000097 [8].

Overall, 155 studies were included, of which 22 (22/155, 14.2%) used new or novel
psychoactive substances terms. Among single NPS classes, synthetic cannabinoids yielded
the majority of papers, with 77 included articles (77/155, 49.7%). In total, 17 articles
were included for synthetic opioids (17/155, 11.0%) and 14 (14/155, 9.0%) for synthetic
cathinones. In addition, 25 papers (25/155, 16.1%) were included from references.

Overall, 155 papers were included in the present review, and discussed by “popula-
tion” and “outcome” of interest.

3.1. Synthetic Opioids

Although they are still of limited diffusion across the European market, synthetic
opioids represent a massive health risk due to their high potency and severe adverse effects.
Indeed, they have been reported as one of the main causes of the waves of opioid deaths
in the USA [9–13]. The term “synthetic opioids” includes a wide range of antinociceptive
and analgesic compounds (fentanyl derivatives, benzamide, acetamide and piperazine
families) [14] that act as partial or full agonists at G-protein-coupled receptors (µ, κ, and
δ) [15–17]. µ-opioid receptors, as shown in knock-out mice, are mainly located in brain and
gastrointestinal tract and lead to anxiolysis, relaxation, sedation, antinociception, euphoria,
and respiratory depression [7,17–21]. Other effects include hypothermia, miosis, nausea,
and the inhibition of gastrointestinal propulsion. The activation of κ and δ-receptors also
leads to hallucination, dissociate feelings, and dysphoria, as shown for U-50488H, and im-
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munomodulation [14,22,23]. The peculiar profile of opioid receptor agonism might explain
also unusual toxicity, e.g., a deep level of unconsciousness for MT-45 [21]. G-proteins (Gαi),
determining the inhibition of cyclic adenosine monophosphate (cAMP) production, inhibi-
tion of Ca2+ channels of the L-type, and activation of the inward-rectifying K+ channels,
leading to hyperpolarization and reduced neuronal excitability, are mainly responsible for
analgesia, while β-arrestins are additional transducers, which could be involved in the
unwanted effects of synthetic opioids [24].

Generally, synthetic opioids present stronger analgesic activity compared to morphine
and classical opioid. Fentanyl and carfentanyl are approximately 50–100- and 10000-times
respectively more potent than classical opioids [25–28]. Affinity to opioid receptors sig-
nificantly differs between stereoisomers, e.g., only the trans form has opioid activity for
U-47700 and U-50488 [27], and R-enantiomers are thought to be more potent than the S
ones [29]. Even though the in vitro efficacy and potency of several new compounds, such
as AP-237, bromadol, brorphine, tianeptine, isotonitazene, and piperidylthiambuetene,
has been characterized [9,30], their exact psychopharmacological and neurotoxicological
profiles remain scarcely known [25].

Synthetic opioids might interact also with other receptors, especially with the sero-
toninergic ones or with monoamine transporters such as norepinephrine transporter (NET)
and serotonin transporter (SERT) [7], as seen for AH-7921, the effects of which were
prolonged by the co-injection of serotonin (5HT) and attenuated by norepinephrine [31].
Contrarily to morphine, which has antagonistic interactions with 5HT3A receptors [32],
interaction of fentanyl with 5HT1A and 2A receptors might lead to additional toxicity due
to serotonin syndrome, especially in combination with other drugs active on the serotonin
system [33]. This might explain why rescue therapy with naloxone (receptor antagonist)
are noneffective, or less effective than what expected [34–36].

Fentanyl and carfentanil also showed relevant affinity for α1 adrenoceptors, possibly
explaining severe muscle rigidity at the laryngeal, tracheal, and chest musculature and
the closure of vocal cords, as well as for dopamine receptors (D4.4 and D1). Moreover,
they blocked the uptake by monoamine transporter 2 and this might further explain the
relevant respiratory and cardiothoracic effects [37].

3.2. Synthetic Cannabinoids

Synthetic cannabinoids, also called “Spice,” are synthetic cannabinoid receptor ago-
nists (SCRAs) which have been originally developed for their potential therapeutic role
by exploiting the endocannabinoid system [38–40]. Since then, “Spice” products have
been sold as legal marijuana surrogate, becoming very popular among younger people
and now representing the widest class of NPS. Synthetic cannabinoids are full agonists at
CB1 and CB2, G-coupled human cannabinoid receptors [41–49], which are weakly bound
by delta-9-tetrahydrocannabinol (THC) and which inhibit adenylyl cyclase and activate
mitogen-activated protein kinases [50,51]. CB receptors can also activate inwardly, rectify-
ing potassium channels and mediating an inhibition of N- and P/Q-type calcium currents
(more details are given in Figure 2 [50].
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Figure 2. Modified from Guzman et al. Cannabinoids: Potential anticancer agents. Nat Rev Cancer.
Mechanism activated by the receptor of human cannabinoids 1 (CB1R), ranging from binding to G-
protein-coupled receptors (Gi/o) with inhibition of the adenylyl cyclase (AdeC), and therefore of the
cyclicAMP (cAMP) and of the protein kinase A (PKA). Inhibition of voltage-sensitive Ca2+ channels
(VSCC); release of Ca2+ from intracellular stores; activation of the phosphatidylinositol 3-kinase
(PI3K)–AKT pathway; activation of mitogen-activated protein kinase cascades as extracellular-signal-
regulated kinase (ERK), JUN amino-terminal kinase (JNK), and p38 and ceramide generation through
FAN–sphingomyelinase (factor associated with neutral sphingomyelinase activation–SMase).

CB1 receptors are mainly located in the central nervous system, thus covering most of
the psychoactive effects of SCRAs. Due to the distribution of CB1 and CB2 receptors on
the terminals of neuron, which mediate a modulation and inhibition of synaptic transmis-
sion, cannabinoids have effects on neuronal development, motor function, cognition, and
memory, appetite, sleep, thermoregulation, analgesia, reward processes, cardiovascular, res-
piratory, immune, and reproductive functions [7,52–55]. Reward, euphoria, memory loss,
altered vigilance, anxiety and cognitive deficit, proconvulsant, antinociceptive, cataleptic,
hypolocomotion, and hypothermic effects of SCRAs, such as JWH-018, JWH-073, 5F-AMB,
5F-AB-PINACA, and Cumyl-4CN-BINACA, are mediated by CB1 receptor activation, as
demonstrated in CB1 knock-out mice or by CB1-blocking agents [56–65]. These neurolog-
ical effects differ from that of classical cannabinoids, e.g., cannabidiol (CBD), one of the
main non-psychotropic cannabinoids, which has been shown to interact with peroxisome
proliferator-activated receptors and acetylcholinesterase and to modulate beta-amyloid
deposition and tau protein phosphorylation, with several promising therapeutic uses [66].

In adolescent and adult mice, in vivo brain administration of 5-MDMB-PICA produced
anxiety-like and compulsive states [67]. The effects on neuronal development have been
also studied. Brain malformations have also been shown due to inhibition of Pax-6, which
is necessary for the closure of the nascent neural tube, as well as CB1-mediated ocular
malformation, lack of memory retention and hyperactivity, and inhibition of new synapses
formation in hippocampal neurons [68]. Moreover, SCRAs induced hyperreflexia and
myoclonias, not induced by THC, with effects prevented by the administration of CB1
receptor antagonist/reverse agonist AM 251, while this is not the case for sensory-motor
impairments [69,70]. CB receptor antagonists also prevent SCRAs from producing cytotoxic
effects on cytotrophoblasts cells, forebrain cultures, and skeletal muscle cells by CP-55.940
and CP 47.497-C8 [71–75].

CB1 receptor have been shown to have a role in the interaction between ethanol and
SCRAs, with an increase in ethanol-induced motor impairments after JWH-018 administra-
tion [76], and in analgesia, with a synergistic effect between SCRAs and opioids [77].
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The selectivity, affinity, and activity of SCRAs appear to be related to their chemical
structure [60,78–80], e.g., the fluorination of the alkyl side chain of Cumyl-PEGACLONE
led to a more affine and active compound, 5F-Cumyl-PEGACLONE [81]. The pharma-
cological profile (affinity and activity) of 5F-Cumyl-PICA 5F-Cumyl-PINACA and 5F-
Cumyl-P7AICA has been also recently determined [82]. Halogenated JWH-018 was less
effective in causing seizures, myoclonia, and hyperreflexia than JWH-018 [83]. Moreover,
the enantiomeric configuration might have a role in the affinity to receptors [84,85].

One of the main issues of SCRAs, which might also lead to death, is represented by
cardiotoxicity and cannabinoid-receptor associated arrhythmias [86], which might be a
CB2-mediated effect, resulting in prolonged QT interval [87]. CB2 might also mediate
a vasodilator effect, additionally triggered by independent (nitric-oxide-related) mech-
anisms [88]. However, no chronotropic effect by CB2 was shown on isolated rat atria
treated with SCRAs, and the exact mechanism of SCRAs-related arrhythmias remains
unknown [89,90].

Metabolites have been shown to retain activity at CB1 and/or CB2 receptors [43]
as shown for JWH-018, JWH-073, 5F-AKB48, and AB-PINACA, with implications for
toxicity [91–94]. However, a non-receptor-mediated mechanism has been proposed for
the toxicity of the JWH-018 main metabolite when compared to the parent drug, and for
WIN55,212-2 in spatial memory tasks, which causes a CB-receptor-independent decrease
of cholinergic activation [95,96].

Interactions with other neuroceptors, leading to inhibition of cholinergic contraction
in the respiratory system, inhibition of glutamate release, and release of dopamine in
the nucleus accumbens, leading in vivo to abuse potential and psychomotor agitation,
might be partly explained by a presynaptic CB1 mediated effect [97–99]. Interactions of
SCRAs has been described with dopamine, serotonin, and glutamate systems, with possible
effects on schizophrenia and psychosis after SCRAs intake [100]. Other non-cannabinoid-
mediated interactions include those with other G-coupled protein receptors, capsaicin
receptor, and the vanilloid receptor 1 [52,101,102]. It should be mentioned that transient
receptor potential (TRP) channels might also mediate significant effects of SCRAs, since
endogenous endocannabinoids such as anandamide are TRP agonists [103]. Moreover,
as shown for AM2201 and JWH-018, SCRAs might act as allosteric modulators of other
receptors, e.g., 5-HT1A receptors, determining a hypothermic response in mice lacking CB
receptors [104] or producing behavioral responses [105]. SCRAs such as WIN55,212-2 can
also inhibit a 5-HT mediated current in a non-CB-receptor-dependent manner [106].

3.3. Stimulants, Psychedelics, and Hallucinogens

Stimulants such as cocaine, amphetamine, MDMA, and cathinones typically determine
a sympathomimetic action, with tachycardia and hypertension, hallucinogenic (including
psychosis and delirium), and psychoactive stimulants effects, e.g., agitation, euphoria, and
increased emotional empathy [7,107–112]. Novel stimulants are considered to lead to the
same effects, though with higher potency [113,114], by interacting with monoamine trans-
porters, particularly with dopamine transporter (DAT), NET, and SERT. This interaction
might be of the “blocking type,” i.e., by inhibition of the uptake of neurotransmitter from
the extracellular space, thus leading to an increase of the respective monoamines [115]. In
addition or alternatively to the blocking of monoamine transporters, some drugs might
act as “substrates,” entering the intracellular space, releasing monoamine, and mediat-
ing a so-called non-exocytotic monoamine efflux, as occurs for MDMA and metham-
phetamine [7,115–118].

Novel psychostimulant drugs are mostly classified on the basis of the greater noradren-
ergic vs. dopaminergic vs. serotoninergic activity [119–123]. Indeed, a high DAT/SERT
ratio and a substrate-type monoamine releasers action is typical of amphetamine-type
stimulant-like properties, with high potential of abuse [124], whereas a lower ratio
(0.01–0.1) leads mainly to empathogenic effects, similarly to MDMA, with low intracranial
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self-stimulation [7,116,125]. The DAT/SERT ratios of the main stimulants are shown in
Figure 3.
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Serotonergic compounds usually lead to a subjective sense of well-being and increased
sociability in humans. These compounds have been associated with 5-HT syndrome, hy-
perthermia, and resulting organ failure [116]. Hyperthermia might be reduced using
adrenergic antagonists, highlighting the importance of adrenergic receptors in the determi-
nation of this adverse effect [126].

The effects of psychostimulants seem to be also influenced by the chiral configuration,
e.g., S-enantiomer may have greater serotoninergic features, and R-enantiomers may have
higher dopaminergic features [127].

Amphetamines are substrates of vesicular monoamine transporters and inhibitors of
monoamine oxidases and interact with trace amine-associated receptor 1 (TAAR1) [7,112,128–131].
Stimulants also present complex interactions with neuroendocrine molecules, e.g., they
increase oxytocin levels, although the latter, as demonstrated for 4-Fluoroamphetamine,
might be unrelated to cognitive and emotional behavior and empathy [132]. Amphetamine-
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type psychostimulant include derivatives of aminorex, such as 4-methylaminorex (4-MAR)
and 4,4′-dimethylaminorex (4,4′-DMAR) [133,134]. Although both are derivatives of
aminorex, the former appears as a more typical stimulant, with a high DAT/SERT ra-
tio, while the latter is thought to lead mainly to empathogenic effects [125].

Both 3,4-dichloromethylphenidate (3,4-CTMP) and ethylphenidate are analogs of
methylphenidate, a prescription drug used in the treatment of the attention-deficit hy-
peractivity disorder (ADHD), and are commonly consumed to produce euphoria or as
cognitive enhancers [7,135]. Even though 3,4-CTMP was originally studied as a treatment
for cocaine abuse [136], methylphenidate derivatives determine a dopamine and a nora-
drenaline efflux in the nucleus accumbens and stria terminalis, which are involved in the
hedonic processing system and which explain the abuse potential of the drugs, with NET
and DAT inhibitor activity [7]. 3,4-CTMP is mainly considered as a a “cocaine-like” instead
of “amphetamine-like” drug, since it increases the release of dopamine when stimulated,
but not in baseline conditions [135]. As a transporter inhibitor, diclofensine has also a
similar pharmacological profile to cocaine. However, it also has high affinity for D2 and for
adrenergic α1A and α2A receptors [137].

Phenmetrazines derivatives, e.g., 3-fluorophenmetrazine (3-FPM), diphenylprolinol
(D2PM), and desoxypipradrol (2-DPMP), similarly to methylphenidate, are DAT and NET
inhibitors, with prolonged psychostimulants effects and low serotoninergic effects [7,116].

Synthetic cathinones, typically called “bath salts,” are both indirect releasers by
transporter blocking action, e.g., pyrovalerone derivatives, and direct substrate effects,
e.g., 4-methylmethcathinone (mephedrone) and methylone [7,118,138–140]. Pyrrolidine-
containing cathinones, such as methylenedioxypyrovalerone (MDPV,) are blockers at DAT
and NET with lower potency at SERT and do not show a substrate activity [118]. MDPV,
one of the most popular bath salts, has been shown to induce an EEG synchronization
associated with delirium syndrome in rats treated by microdialysis, blocked by D1 and
D2 receptor antagonists [141]. Moreover, it led to the reduction of social play behavior in
young adult male rats, while effects were blocked by RX821002 and flupenthixol, respec-
tively, α2 and dopamine receptor antagonists [142]. Drug-induced dopaminergic activity
parallels the locomotor stimulation and rewarding effect [118,143,144]. Methylone is a non-
specific substrate [118], producing an inward current at SERT but not at DAT, similarly to
MDMA [145], and oxidative stress, which is responsible for the neurotoxicity of methylone
and, to a greater extent, MDPV [146]. 4-MEC, 4-MePP, and α-PVP also mainly block DAT,
with greater abuse potential compared to other stimulants [147,148]. Unusual neuropsychi-
atric symptoms have been attributed to some synthetic cathinones, suggesting additional
pharmacological features. Among synthetic cathinones, α-pyrrolidinohexiophenone (α-
PHP) also exhibit anticholinergic activity (at M1 and M2 receptors), which might have a
role in clinical features such as delusions, cognitive impairment, and cardiovascular effect
such as tachycardia and hypertension [149]. α-PPP has an antagonistic interaction with
5-HT2A-receptors, which could be responsible for its limited abuse potential compared to
other compounds of the same class [150].

Among benzofurans (e.g., 5-APB) indole derivatives and amino-indane, 5-iodoaminoindane
(5-IAI), and 5,6-methylenedioxy-2-aminoindane (MDAI) preferentially inhibit SERT and
NET, and the latter also has shown NE-releasing properties [116,151–155]. Among piper-
azines, 1-benzylpiperazine (BZP) has a more selective action on NET, with no or low sero-
toninergic effects, leading to cardiostimulant effects, agitation, seizures, and hyperthermia,
while other compounds pertaining to the same class, e.g., meta-chlorophenylpiperazine
(m-CPP) and trifluoromethylphenylpiperazine (TFMPP), have low effects on DAT and NET
and predominantly act as indirect (transporter inhibitor) and direct serotonergic agonists,
resulting in effects such as dysphoria, dizziness, anxiety, and more nausea compared to
MDMA [7,116]. 5-APB has been shown to interact with the dopamine transporter, slowing
dopamine reuptake and causing its reverse transport at high doses, and is an agonist at
the 5-HT2A and 5-HT2B-receptors in the rat. The interaction with serotoninergic receptors
might mediate the hallucinogenic and cardiotoxic effects [152].
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Stimulants of the thiophene designer drug groups have been shown to interact with
5-HT adrenergic and dopaminergic receptors, as well as N-methyl-D-aspartate (NMDA)
and sigma-1 receptors [7]. The locomotor sensitization effect might be mainly mediated
by dopaminergic activation, as shown for metathiopropamine (MPA), an NPS of the
methamphetamine type, the effect of which is reversed by D2 but not by D1 receptor
antagonists [156].

Psychedelics and hallucinogen determine alterations in the perception, beside mood and
cognition modifications [157]. Within this class, tryptamines, e.g., N,N-dimethyltryptamine (DMT)
and psilocybin, and “psychedelic amphetamines,” e.g., 2,5-dimethoxy-4-iodoamphetamine (DOI)
and N-benzylphenethylamines (NBOMes), are included [7,158]. Neuropsychological effects
of many psychedelics, including the head twitch response, which is used as a behav-
ioral paradigm to distinguish hallucinogenic drugs, are mediated by the activation of
5-HT receptors, for which NBOMes show high affinity [158]. Generally, phenethylamines,
also called “party pills” [158], such as 25B-NBOMe, have high 5-HT2A and 5-HT2C affin-
ity and potency [158]. However, many NBOMEs also display affinity for dopaminergic
receptors, e.g., D2, and for monoamine transporters, leading to abuse potential and re-
warding and reinforcing effects [159–161]. Substituted phenethylamines, such as MAL
and BOD, also alter the dopaminergic system by interacting with receptors in the nu-
cleus accumbens and dopamine transport [162]. In addition, 4-iodo-2,5-dimethoxy-N-(2-
methoxybenzyl)phenethylamine (25I-NBOMe) increases glutamate levels [7]. Although
mainly mediating serotoninergic action, most tryptamine bind to 5-HT1A receptors. More-
over, as demonstrated by in vitro studies, they bind on adrenergic, dopaminergic, and
histaminergic receptors and transporters. For example, psilocin is a transporter inhibitor,
while DMT is a transporter substrate [7].

Another class of NPS, properly of the dissociative type, is represented by derivative
of phencyclidine (PCP) and ketamine, which are N-methyl D-aspartate (NMDA) receptor
antagonists. Subjective effects associated with the intake of these drugs include dissociative-
like effects, with alteration of the mood and thought, and schizophrenia-like effects [163].

Antidepressant effects of these compounds, e.g., methoxetamine, as demonstrated
by forced swim tests on mice, might be related to the interactions with the glutamatergic
system by the activation of the mammalian target of rapamycin, involved in synaptic
plasticity, by a modulation of the brain-derived neurotrophic factor (BDNF), or by SERT
properties. Moreover, methoxetamine has shown to be a DAT inhibitor and an agonist of
muscarinic cholinergic and 5-HT2 receptors, and to produce analgesia [164]. Diphenidine
and methoxphenidine are also dissociative drugs, acting as NMDA antagonists. Dipheni-
dine further inhibits NET and DAT, while it is a less potent DAT inhibitor, but both do not
mediate an efflux of monoamines [137]. N-Ethyl-1,2-diphenylethanamine (ephenidine) also
acts selectively by blocking NMDA receptors with a higher potency than ketamine, though
also interacting with NET and DAT, which might contribute to the behavioral profile of the
drug [163].

4. Discussion and Conclusions

Harmful effects of NPS have been repeatedly proven to be fatal as reported by case
reports, case series, and reviews present in the literature [7,85,165–168]. Also, data from
studies applied to animals, conducted so far mostly in mice, unequivocally draw great
attention to the acute toxic effects of these chemicals [169–171]. The thorough review on
existing data carried out in this study confirms that the group of NPS is extremely large
and variated. The review also shows that a distinction among different structural classes
is fundamental to understand the pharmacological effects and to help clinicians in the
diagnostic process in case of first aid admission.

Most importantly, our review demonstrates that the type of activity in the central
nervous system as well as in periphery is not constant and homogeneous across different
molecules [7]. Even within the same structural class, notwithstanding the identification
of a primary or more typical mechanism of action, e.g., via the CB1 or CB2 receptors for
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synthetic cannabinoids [51], the effects might be mediated by different systems [103–106].
The unique profile of a single substance is responsible for its very peculiar toxicity, which
might be strongly influenced by even minor structural or chemical modifications. This is
particularly true not only for psychostimulants, psychedelics, and hallucinogens, which
are composed by several subclasses [7,119–123], but also for synthetic opioids based on
the differential elicitation of µ, κ, and δ opioid and nonopioid receptors [7,21,37]. This
wide extent of possible neuromodulators and the great variability in action within a single
class or subclass probably explains the higher toxicity of NPS when compared to the
classical drugs of abuse and bares several consequences not only for clinicians, which
could face unexpected effects and failure of classical treatments, but also for forensic
toxicologists [20,86].

A deep study of each single compound, including its metabolism, which should
be considered in the toxicological profile, as shown for several synthetic cannabinoids
remaining active at the CB receptors, appears essential to understand its pharmacodynamic
properties and true toxic potential. A similar comprehension can only be based, as shown
in the present review, on the application of different types of studies, from preclinical
studies, including in silico, in vitro, and animal studies, to human experiments and even to
the application of innovative technologies, e.g., positron emission tomography (PET) and
functional MRI [20]. A better knowledge of the pharmacokinetic and pharmacodynamic of
NPS appears to be of fundamental importance to identify possible psychoactive metabolites,
contributing to the toxicity and to pharmacological effects.

Finally, the forensic scientific community should devote more efforts toward devel-
oping and applying screening methods based on mass spectrometry detection which are
able to identify the widest range of NPS in biological fluids in the setting of clinical and
forensic toxicology, as well as to publishing more papers on this issue in medicolegal Jour-
nals [20,86,166,172,173]. In fact, one of the main issues is the apparently lack of toxicological
data on users at first aid admission in the case of acute intoxication, with diagnosis based
mainly on symptoms and reports [20]. Moreover, a comprehensive toxicological screening
is not always applied in cases of overdoses due to the great analytical challenges posed by
NPS identification and quantitation in biological fluids. All these issues contribute to an
underestimation of the diffusion of the NPS among the population. Finally, an evaluation
of the chronic effects of these chemicals is lacking, as well as the long-term effects deriving
from mixing them.
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